Enhanced Generative Recommendation via Content and Collaboration Integration

Yidan Wang,Zhaochun Ren,Weiwei Sun, Jiyuan Yang, Zhixiang Liang, Xin Chen,Ruobing Xie,Su Yan,Xu Zhang,Pengjie Ren,Zhumin Chen,Xin Xin

CoRR(2024)

引用 0|浏览5
暂无评分
摘要
Generative recommendation has emerged as a promising paradigm aimed at augmenting recommender systems with recent advancements in generative artificial intelligence. This task has been formulated as a sequence-to-sequence generation process, wherein the input sequence encompasses data pertaining to the user's previously interacted items, and the output sequence denotes the generative identifier for the suggested item. However, existing generative recommendation approaches still encounter challenges in (i) effectively integrating user-item collaborative signals and item content information within a unified generative framework, and (ii) executing an efficient alignment between content information and collaborative signals. In this paper, we introduce content-based collaborative generation for recommender systems, denoted as ColaRec. To capture collaborative signals, the generative item identifiers are derived from a pretrained collaborative filtering model, while the user is represented through the aggregation of interacted items' content. Subsequently, the aggregated textual description of items is fed into a language model to encapsulate content information. This integration enables ColaRec to amalgamate collaborative signals and content information within an end-to-end framework. Regarding the alignment, we propose an item indexing task to facilitate the mapping between the content-based semantic space and the interaction-based collaborative space. Additionally, a contrastive loss is introduced to ensure that items with similar collaborative GIDs possess comparable content representations, thereby enhancing alignment. To validate the efficacy of ColaRec, we conduct experiments on three benchmark datasets. Empirical results substantiate the superior performance of ColaRec.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要