A BAC-NOMA Design for 6 G umMTC With Hybrid SIC: Convex Optimization or Learning-Based?

IEEE Transactions on Vehicular Technology(2024)

引用 0|浏览7
暂无评分
摘要
This paper presents a new backscattering communication (BackCom)-assisted non-orthogonal multiple access (BAC-NOMA) transmission scheme for device-to-device (D2D) communications. This scheme facilitates energy and spectrum cooperation between BackCom devices and cellular downlink users in 6 G ultra-massive machine -type communications (umMTC) scenarios. Given its quasi-uplink nature, the hybrid successive interference cancellation (SIC) is applied to further improve performance. The data rate of BackCom devices with high quality of service (QoS) requirements is maximized by jointly optimizing backscatter coefficients and the beamforming vector. The use of hybrid SIC and BackCom yields two non-concave sub-problems involving transcendental functions. To address this problem, this paper designs and compares convex optimization-based and unsupervised deep learning-based algorithms. In the convex optimization, the closed-form backscatter coefficients of the first sub-problem are obtained, and then semi-definite relaxation (SDR) is utilized to design the beamforming vector. On the other hand, the second sub-problem is approximated by using a combination of sequential convex approximation (SCA) and SDR. For unsupervised deep learning-based optimization, a loss function is properly designed to satisfy constraints. Computer simulations show the following instructive results: i) the superiority of the hybrid SIC strategy; ii) the distinct sensitivities and efficacies of these two algorithms in response to varying parameters; iii) the superior robustness of the unsupervised deep learning-based optimization.
更多
查看译文
关键词
Non-orthogonal multiple access (NOMA),backscatter communications(BackCom),hybrid SIC,convex optimization,unsupervised deep learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要