A Principled Distributional Approach to Trajectory Similarity Measurement and its Application to Anomaly Detection

Yufan Wang, Zijing Wang,Kai Ming Ting, Yuanyi Shang

JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH(2024)

引用 0|浏览3
暂无评分
摘要
This paper aims to solve two enduring challenges in existing trajectory similarity measures: computational inefficiency and the absence of the 'uniqueness' property that should be guaranteed in a distance function: dist(X, Y ) = 0 if and only if X = Y, where X and Y are two trajectories. In this work, we present a novel approach utilizing a distributional kernel for trajectory representation and similarity measurement, based on the kernel mean embedding framework. It is the very first time a distributional kernel is used for trajectory representation and similarity measurement. Our method does not rely on point-to-point distances which are used in most existing distances for trajectories. Unlike prevalent learning and deep learning approaches, our method requires no learning. We show the generality of this new approach in anomalous trajectory and sub-trajectory detection. We identify that the distributional kernel has (i) a data-dependent property and the 'uniqueness' property which are the key factors that lead to its superior task-specific performance, and (ii) runtime orders of magnitude faster than existing distance measures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要