LRSCwait: Enabling Scalable and Efficient Synchronization in Manycore Systems through Polling-Free and Retry-Free Operation

CoRR(2024)

引用 0|浏览7
暂无评分
摘要
Extensive polling in shared-memory manycore systems can lead to contention, decreased throughput, and poor energy efficiency. Both lock implementations and the general-purpose atomic operation, load-reserved/store-conditional (LRSC), cause polling due to serialization and retries. To alleviate this overhead, we propose LRwait and SCwait, a synchronization pair that eliminates polling by allowing contending cores to sleep while waiting for previous cores to finish their atomic access. As a scalable implementation of LRwait, we present Colibri, a distributed and scalable approach to managing LRwait reservations. Through extensive benchmarking on an open-source RISC-V platform with 256 cores, we demonstrate that Colibri outperforms current synchronization approaches for various concurrent algorithms with high and low contention regarding throughput, fairness, and energy efficiency. With an area overhead of only 6 terms of throughput and 7.1x in terms of energy efficiency.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要