Transferring Core Knowledge via Learngenes

CoRR(2024)

引用 0|浏览7
暂无评分
摘要
The pre-training paradigm fine-tunes the models trained on large-scale datasets to downstream tasks with enhanced performance. It transfers all knowledge to downstream tasks without discriminating which part is necessary or unnecessary, which may lead to negative transfer. In comparison, knowledge transfer in nature is much more efficient. When passing genetic information to descendants, ancestors encode only the essential knowledge into genes, which act as the medium. Inspired by that, we adopt a recent concept called “learngene” and refine its structures by mimicking the structures of natural genes. We propose the Genetic Transfer Learning (GTL) – a framework to copy the evolutionary process of organisms into neural networks. GTL trains a population of networks, selects superior learngenes by tournaments, performs learngene mutations, and passes the learngenes to next generations. Finally, we successfully extract the learngenes of VGG11 and ResNet12. We show that the learngenes bring the descendant networks instincts and strong learning ability: with 20 on CIFAR-FS and miniImageNet. Besides, the learngenes have the scalability and adaptability on the downstream structure of networks and datasets. Overall, we offer a novel insight that transferring core knowledge via learngenes may be sufficient and efficient for neural networks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要