Deductive Verification of Parameterized Embedded Systems Modeled in SystemC

Philip Tasche,Raul E. Monti, Stefanie Eva Drerup, Pauline Blohm,Paula Herber,Marieke Huisman

VERIFICATION, MODEL CHECKING, AND ABSTRACT INTERPRETATION, VMCAI 2024, PT II(2024)

引用 0|浏览3
暂无评分
摘要
Major strengths of deductive verification include modular verification and support for functional properties and unbounded parameters. However, in embedded systems, crucial safety properties often depend on concurrent process interactions, events, and time. Such properties are global in nature and thus difficult to verify in a modular fashion. Furthermore, the execution and scheduling semantics of industrially used embedded system design languages such as SystemC are typically only informally defined. In this paper, we propose a deductive verification approach for embedded systems that are modeled with SystemC. Our main contribution is twofold: 1) We provide a formal encoding and an automated transformation of SystemC designs for verification with the VerCors deductive verifier. 2) We present a novel approach for invariant construction to abstractly capture global dependencies. Our encoding enables an automated formalization and deductive verification of parameterized SystemC designs, and the invariant construction enables local reasoning about global properties with comparatively low manual effort. We demonstrate the applicability of our approach on three parameterized case studies, including an automotive control system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要