Security, extensibility, and redundancy in the Metabolic Operating System

CoRR(2023)

引用 0|浏览2
暂无评分
摘要
People living with Type 1 Diabetes (T1D) lose the ability to produce insulin naturally. To compensate, they inject synthetic insulin. One common way to inject insulin is through automated insulin delivery systems, which use sensors to monitor their metabolic state and an insulin pump device to adjust insulin to adapt. In this paper, we present the Metabolic Operating System, a new automated insulin delivery system that we designed from the ground up using security first principles. From an architecture perspective, we apply separation principles to simplify the core system and isolate non-critical functionality from the core closed-loop algorithm. From an algorithmic perspective, we evaluate trends in insulin technology and formulate a simple, but effective, algorithm given the state-of-the-art. From a safety perspective, we build in multiple layers of redundancy to ensure that the person using our system remains safe. Fundamentally, this paper is a paper on real-world experiences building and running an automated insulin delivery system. We report on the design iterations we make based on experiences working with one individual using our system. Our evaluation shows that an automated insulin delivery system built from the ground up using security first principles can still help manage T1D effectively. Our source code is open source and available on GitHub (link omitted).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要