Quantum State Preparation Using an Exact CNOT Synthesis Formulation

Hanyu Wang,Bochen Tan,Jason Cong, Giovanni De Micheli

CoRR(2024)

引用 0|浏览5
暂无评分
摘要
Minimizing the use of CNOT gates in quantum state preparation is a crucial step in quantum compilation, as they introduce coupling constraints and more noise than single-qubit gates. Reducing the number of CNOT gates can lead to more efficient and accurate quantum computations. However, the lack of compatibility to model superposition and entanglement challenges the scalability and optimality of CNOT optimization algorithms on classical computers. In this paper, we propose an effective state preparation algorithm using an exact CNOT synthesis formulation. Our method represents a milestone as the first design automation algorithm to surpass manual design, reducing the best CNOT numbers to prepare a Dicke state by 2x. For general states with up to 20 qubits, our method reduces the CNOT number by 9 sparse states, on average, compared to the latest algorithms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要