Exploring fairness in food delivery routing and scheduling problems

EXPERT SYSTEMS WITH APPLICATIONS(2024)

引用 0|浏览7
暂无评分
摘要
Demand for delivery of take -away meals to customers has been growing worldwide, with deliveries often performed by non -specialised gig economy couriers working for online platform operators such as Deliveroo or Just Eat. This has led to the introduction of the 'meal delivery problem', characterised by a series of individual pickup and delivery tasks to be assigned to available couriers. While there is a vast set of algorithms proposed in the literature that aim to minimise total workload, very little attention has been given to equitably distributing work between couriers. We propose a new multi -objective problem that is aiming at distributing orders equitably between couriers as well as minimising total workload, where all information is known upfront. We propose an integer linear programming (ILP) model with a weighted objective function that is used to derive the Pareto front in small-scale problems by exploiting the epsilon-constraint approach. This formulation has been proven to solve in a reasonable time for problems with up to 60 orders, however, the optimal Pareto front can only be computed within a reasonable time for problems up to 30 orders. For problems with more orders, we propose a Variable Neighbourhood Search (VNS) algorithm, for which the fitness evaluation evolves in order to explore a wider set of the solution space. The VNS is compared against the ILP and also tested on more realistic size instances with up to 3123 orders, improving the performance over the business as usual and shows that equitable distribution of work can be achieved alongside reducing the total travelled distance.
更多
查看译文
关键词
Food delivery,Vehicle routing,Fairness,Variable neighbourhood search,Integer linear programming
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要