Counting Unpredictable Bits: A Simple PRG from One-Way Functions

THEORY OF CRYPTOGRAPHY, TCC 2023, PT I(2023)

引用 0|浏览1
暂无评分
摘要
A central result in the theory of Cryptography, by Hastad, Imagliazzo, Luby and Levin [SICOMP'99], demonstrates that the existence one-way functions (OWF) implies the existence of pseudo-random generators (PRGs). Despite the fundamental importance of this result, and several elegant improvements/simplifications, analyses of constructions of PRGs from OWFs remain complex (both conceptually and technically). Our goal is to provide a construction of a PRG from OWFs with a simple proof of security; we thus focus on the setting of non-uniform security (i.e., we start off with a OWF secure against non-uniform PPT, and we aim to get a PRG secure against non-uniform PPT). Our main result is a construction of a PRG from OWFs with a self-contained, simple, proof of security, relying only on the Goldreich-Levin Theorem (and the Chernoff bound). Although our main goal is simplicity, the construction, and a variant there-of, also improves the efficiency-in terms of invocations and seed lengths-of the state-of-the-art constructions due to [Haitner-Reingold-Vadhan, STOC'10] and [Vadhan-Zheng, STOC'12], by a factor O(log(2) n). The key novelty in our analysis is a generalization of the Blum-Micali [FOCS'82] notion of unpredictabilty-rather than requiring that every bit in the output of a function is unpredictable, we count how many unpredictable bits a function has, and we show that any OWF on n input bits (after hashing the input and the output) has n + O(log n) unpredictable output bits. Such unpredictable bits can next be "extracted" into a pseudorandom string using standard techniques.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要