Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data

AAAI 2024(2024)

引用 4|浏览110
暂无评分
摘要
Multivariate Time-Series (MTS) data is crucial in various application fields. With its sequential and multi-source (multiple sensors) properties, MTS data inherently exhibits Spatial-Temporal (ST) dependencies, involving temporal correlations between timestamps and spatial correlations between sensors in each timestamp. To effectively leverage this information, Graph Neural Network-based methods (GNNs) have been widely adopted. However, existing approaches separately capture spatial dependency and temporal dependency and fail to capture the correlations between Different sEnsors at Different Timestamps (DEDT). Overlooking such correlations hinders the comprehensive modelling of ST dependencies within MTS data, thus restricting existing GNNs from learning effective representations. To address this limitation, we propose a novel method called Fully-Connected Spatial-Temporal Graph Neural Network (FC-STGNN), including two key components namely FC graph construction and FC graph convolution. For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances, enabling us to fully model the ST dependencies by considering the correlations between DEDT. Further, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations. Extensive experiments show the effectiveness of FC-STGNN on multiple MTS datasets compared to SOTA methods. The code is available at https://github.com/Frank-Wang-oss/FCSTGNN.
更多
查看译文
关键词
ML: Time-Series/Data Streams,ML: Graph-based Machine Learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要