MXene/zinc ion embedded agar/sodium alginate hydrogel for rapid and efficient sterilization with photothermal and chemical synergetic therapy

TALANTA(2024)

引用 0|浏览6
暂无评分
摘要
Bacterial infections can significantly impair wound healing. Therefore, it is essential to develop wound dressings with high antimicrobial activity. Hydrogels are often used as wound dressings due to their excellent physicochemical properties. Herein, by cross linking sodium alginate (SA), agar (AG) with Ti3C2Tx MXene and Zinc ions (Zn2+), a biosafe composite hydrogel (MSG-Zn2+) was developed for fast and efficient sterilization treatment. The excellent photothermal properties of Ti3C2Tx MXene and the chemical antimicrobial activity of Zn2+ enable synergistic photothermal therapy (PTT)/chemical therapy in NIR biowindow with reduced power density and improved antimicrobial efficiency. More importantly, the incorporation of Zn2+ can enhance the effective contact between the hydrogel and bacteria, benefiting both photothermal and chemical antibacteria. In vitro antibacterial experiments showed that MSG-Zn2+ has a broad-spectrum antibacterial effect against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). Cellular experiments showed that the hydrogel had excellent biocompatibility and the released Zn2+ stimulated cell migration. In addition, the prepared MSG-Zn2+ hydrogel has other advantages such as hydrophilic, high swelling, simple and low cost preparation, which meets the requirements of an economical wound dressing. This proposed work shows that this composite hydrogel MSG-Zn2+ has great potential for practical antimicrobial wound dressing applications.
更多
查看译文
关键词
Agar/sodium alginate hydrogel,Antibacterial photothermal therapy,Sterilization treatment,Wound dressing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要