Linear Programming based Reductions for Multiple Visit TSP and Vehicle Routing Problems

CoRR(2023)

引用 0|浏览8
暂无评分
摘要
Multiple TSP ($\mathrm{mTSP}$) is a important variant of $\mathrm{TSP}$ where a set of $k$ salesperson together visit a set of $n$ cities. The $\mathrm{mTSP}$ problem has applications to many real life applications such as vehicle routing. Rothkopf introduced another variant of $\mathrm{TSP}$ called many-visits TSP ($\mathrm{MV\mbox{-}TSP}$) where a request $r(v)\in \mathbb{Z}_+$ is given for each city $v$ and a single salesperson needs to visit each city $r(v)$ times and return back to his starting point. A combination of $\mathrm{mTSP}$ and $\mathrm{MV\mbox{-}TSP}$ called many-visits multiple TSP $(\mathrm{MV\mbox{-}mTSP})$ was studied by B\'erczi, Mnich, and Vincze where the authors give approximation algorithms for various variants of $\mathrm{MV\mbox{-}mTSP}$. In this work, we show a simple linear programming (LP) based reduction that converts a $\mathrm{mTSP}$ LP-based algorithm to a LP-based algorithm for $\mathrm{MV\mbox{-}mTSP}$ with the same approximation factor. We apply this reduction to improve or match the current best approximation factors of several variants of the $\mathrm{MV\mbox{-}mTSP}$. Our reduction shows that the addition of visit requests $r(v)$ to $\mathrm{mTSP}$ does $\textit{not}$ make the problem harder to approximate even when $r(v)$ is exponential in number of vertices. To apply our reduction, we either use existing LP-based algorithms for $\mathrm{mTSP}$ variants or show that several existing combinatorial algorithms for $\mathrm{mTSP}$ variants can be interpreted as LP-based algorithms. This allows us to apply our reduction to these combinatorial algorithms as well achieving the improved guarantees.
更多
查看译文
关键词
multiple visit tsp,vehicle routing,routing problems,reductions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要