An analytical model of active inference in the Iterated Prisoner's Dilemma

Communications in computer and information science(2023)

引用 0|浏览9
暂无评分
摘要
This paper addresses a mathematically tractable model of the Prisoner's Dilemma using the framework of active inference. In this work, we design pairs of Bayesian agents that are tracking the joint game state of their and their opponent's choices in an Iterated Prisoner's Dilemma game. The specification of the agents' belief architecture in the form of a partially-observed Markov decision process allows careful and rigourous investigation into the dynamics of two-player gameplay, including the derivation of optimal conditions for phase transitions that are required to achieve certain game-theoretic steady states. We show that the critical time points governing the phase transition are linearly related to each other as a function of learning rate and the reward function. We then investigate the patterns that emerge when varying the agents' learning rates, as well as the relationship between the stochastic and deterministic solutions to the two-agent system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要