Biopotentials of Collagen Scaffold Impregnated with Plant-Cell-Derived Epidermal Growth Factor in Defective Bone Healing

Materials(2023)

引用 0|浏览5
暂无评分
摘要
The combination of scaffolds with recombinant human epidermal growth factor (rhEGF) protein can enhance defective bone healing via synergistic activation to stimulate cellular growth, differentiation, and survival. We examined the biopotentials of an rhEGF-loaded absorbable collagen scaffold (ACS) using a mouse model of calvarial defects, in which the rhEGF was produced from a plant cell suspension culture system because of several systemic advantages. Here, we showed a successful and large-scale production of plant-cell-derived rhEGF protein (p-rhEGF) by introducing an expression vector that cloned with its cDNA under the control of rice alpha-amylase 3D promoter into rice calli (Oryza sativa L. cv. Dongjin). Implantation with p-rhEGF (5 mu g)-loaded ACSs into critical-sized calvarial defects enhanced new bone formation and the expression of osteoblast-specific markers in the defected regions greater than implantation with ACSs alone did. The potency of p-rhEGF-induced bone healing was comparable with that of Escherichia coli-derived rhEGF protein. The exogenous addition of p-rhEGF increased the proliferation of human periodontal ligament cells and augmented the induction of interleukin 8, bone morphogenetic protein 2, and vascular endothelial growth factor in the cells. Collectively, this study demonstrates the successful and convenient production of p-rhEGF, as well as its potency to enhance ACS-mediated bone regeneration by activating cellular responses that are required for wound healing.
更多
查看译文
关键词
plant cell suspension culture system,recombinant human EGF,collagen scaffold,defective bone healing,human periodontal ligament cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要