Accelerating Random Forest Classification on GPU and FPGA.

ICPP(2022)

引用 0|浏览29
暂无评分
摘要
Random Forests (RFs) are a commonly used machine learning method for classification and regression tasks spanning a variety of application domains, including bioinformatics, business analytics, and software optimization. While prior work has focused primarily on improving performance of the training of RFs, many applications, such as malware identification, cancer prediction, and banking fraud detection, require fast RF classification. In this work, we accelerate RF classification on GPU and FPGA. In order to provide efficient support for large datasets, we propose a hierarchical memory layout suitable to the GPU/FPGA memory hierarchy. We design three RF classification code variants based on that layout, and we investigate GPU- and FPGA-specific considerations for these kernels. Our experimental evaluation, performed on an Nvidia Xp GPU and on a Xilinx Alveo U250 FPGA accelerator card using publicly available datasets on the scale of millions of samples and tens of features, covers various aspects. First, we evaluate the performance benefits of our hierarchical data structure over the standard compressed sparse row (CSR) format. Second, we compare our GPU implementation with cuML, a machine learning library targeting Nvidia GPUs. Third, we explore the performance/accuracy tradeoff resulting from the use of different tree depths in the RF. Finally, we perform a comparative performance analysis of our GPU and FPGA implementations. Our evaluation shows that, while reporting the best performance on GPU, our code variants outperform the CSR baseline both on GPU and FPGA. For high accuracy targets, our GPU implementation yields a 5-9x speedup over CSR, and up to a 2x speedup over Nvidia's cuML library.
更多
查看译文
关键词
random forest classification, GPU, FPGA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要