Collisionally Stable Gas of Bosonic Dipolar Ground State Molecules

Nature Physics(2023)

引用 0|浏览14
暂无评分
摘要
Stable ultracold ensembles of dipolar molecules hold great promise for many-body quantum physics, but high inelastic loss rates have been a long-standing challenge. Recently, it was shown that gases of fermionic molecules can be effectively stabilized through external fields. However, many quantum applications will benefit from molecular ensembles with bosonic statistics. Here, we stabilize a bosonic gas of strongly dipolar NaCs molecules against inelastic losses via microwave shielding, decreasing losses by more than a factor of 200 and reaching lifetimes on the scale of 1 second. We also measure high elastic scattering rates, a result of strong dipolar interactions, and observe the anisotropic nature of dipolar collisions. Finally, we demonstrate evaporative cooling of a bosonic molecular gas to a temperature of 36(5) nK, increasing its phase-space density by a factor of 20. This work is a critical step towards the creation of a Bose-Einstein condensate of dipolar molecules.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要