Sparse Dimensionality Reduction Revisited

arxiv(2023)

引用 0|浏览40
暂无评分
摘要
The sparse Johnson-Lindenstrauss transform is one of the central techniques in dimensionality reduction. It supports embedding a set of $n$ points in $\mathbb{R}^d$ into $m=O(\varepsilon^{-2} \lg n)$ dimensions while preserving all pairwise distances to within $1 \pm \varepsilon$. Each input point $x$ is embedded to $Ax$, where $A$ is an $m \times d$ matrix having $s$ non-zeros per column, allowing for an embedding time of $O(s \|x\|_0)$. Since the sparsity of $A$ governs the embedding time, much work has gone into improving the sparsity $s$. The current state-of-the-art by Kane and Nelson (JACM'14) shows that $s = O(\varepsilon ^{-1} \lg n)$ suffices. This is almost matched by a lower bound of $s = \Omega(\varepsilon ^{-1} \lg n/\lg(1/\varepsilon))$ by Nelson and Nguyen (STOC'13). Previous work thus suggests that we have near-optimal embeddings. In this work, we revisit sparse embeddings and identify a loophole in the lower bound. Concretely, it requires $d \geq n$, which in many applications is unrealistic. We exploit this loophole to give a sparser embedding when $d = o(n)$, achieving $s = O(\varepsilon^{-1}(\lg n/\lg(1/\varepsilon)+\lg^{2/3}n \lg^{1/3} d))$. We also complement our analysis by strengthening the lower bound of Nelson and Nguyen to hold also when $d \ll n$, thereby matching the first term in our new sparsity upper bound. Finally, we also improve the sparsity of the best oblivious subspace embeddings for optimal embedding dimensionality.
更多
查看译文
关键词
dimensionality,reduction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要