Mitigating Adversarial Effects of False Data Injection Attacks in Power Grid

arxiv(2023)

引用 0|浏览5
暂无评分
摘要
Deep Neural Networks have proven to be highly accurate at a variety of tasks in recent years. The benefits of Deep Neural Networks have also been embraced in power grids to detect False Data Injection Attacks (FDIA) while conducting critical tasks like state estimation. However, the vulnerabilities of DNNs along with the distinct infrastructure of cyber-physical-system (CPS) can favor the attackers to bypass the detection mechanism. Moreover, the divergent nature of CPS engenders limitations to the conventional defense mechanisms for False Data Injection Attacks. In this paper, we propose a DNN framework with additional layer which utilizes randomization to mitigate the adversarial effect by padding the inputs. The primary advantage of our method is when deployed to a DNN model it has trivial impact on the models performance even with larger padding sizes. We demonstrate the favorable outcome of the framework through simulation using the IEEE 14-bus, 30-bus, 118-bus and 300-bus systems. Furthermore to justify the framework we select attack techniques that generate subtle adversarial examples that can bypass the detection mechanism effortlessly.
更多
查看译文
关键词
false data injection attacks,adversarial effects,power grid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要