DaS: Implementing Dense Ising Machines Using Sparse Resistive Networks.

ICCAD(2022)

引用 2|浏览4
暂无评分
摘要
Ising machines have generated much excitement in recent years due to their promise for solving hard combinatorial optimization problems. However, achieving physical all-to-all connectivity in IC implementations of large, densely-connected Ising machines remains a key challenge. We present a novel approach, DaS, that uses low-rank decomposition to achieve effectively-dense Ising connectivity using only sparsely interconnected hardware. The innovation consists of two components. First, we use the SVD to find a l o w-rank a p proximation o f t h e I s ing c o upling matrix while maintaining very high accuracy. This decomposition requires substantially fewer nonzeros to represent the dense Ising coupling matrix. Second, we develop a method to translate the low-rank decomposition to a hardware implementation that uses only sparse resistive interconnections. We validate DaS on the MU-MIMO detection problem, important in modern telecommunications. Our results indicate that as problem sizes scale, DaS can achieve dense Ising coupling using only 5%-20% of the resistors needed for brute-force dense connections (which would be physically infeasible in ICs). We also outline a crossbar-style physical layout scheme for realizing sparse resistive networks generated by DaS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要