Randezvous: Making Randomization Effective on MCUs

Annual Computer Security Applications Conference(2022)

引用 0|浏览29
暂无评分
摘要
Internet-of-Things devices such as autonomous vehicular sensors, medical devices, and industrial cyber-physical systems commonly rely on small, resource-constrained microcontrollers (MCUs). MCU software is typically written in C and is prone to memory safety vulnerabilities that are exploitable by remote attackers to launch code reuse attacks and code/control data leakage attacks. We present Randezvous, a highly performant diversification-based mitigation to such attacks and their brute force variants on ARM MCUs. Atop code/data layout randomization and an efficient execute-only code approach, Randezvous creates decoy pointers to camouflage control data in memory; code pointers in the stack are then protected by a diversified shadow stack, local-to-global variable promotion, and return address nullification. Moreover, Randezvous adds a novel delayed reboot mechanism to slow down persistent attacks and mitigates control data spraying attacks via global guards. We demonstrate Randezvous's security by statistically modeling leakage-equipped brute force attacks under Randezvous, crafting a proof-of-concept exploit that shows Randezvous's efficacy, and studying a real-world CVE. Our evaluation of Randezvous shows low overhead on three benchmark suites and two applications.
更多
查看译文
关键词
microcontrollers, control data protection, entropy improvements, randomization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要