Graph Neural Network based Hardware Trojan Detection at Intermediate Representative for SoC Platforms

ACM Great Lakes Symposium on VLSI (GLSVLSI)(2022)

引用 0|浏览26
暂无评分
摘要
The rapid growth of the Internet of Things (IoT) industry has increased the demand for intellectual property (IP) cores. Increasing numbers of third-party vendors have raised security concerns for System-on-Chip (SoC) designers. With the growing complexity of SoC design, the workload is overwhelming for SoC designers to diagnose security vulnerabilities manually. Almost all existing SoC platforms are developed using SystemVerilog. However, there is a lack of reliable security static analysis tools for directly processing the SystemVerilog program. Due to its open-source, flexibility and extendability, RISC-V CPU has become an ideal platform for the IoT applications such as wearable devices, entertainment, smart thermostats, etc. As a result, assuring the trustworthiness of a given RISC-V system is highly desired. This paper proposes a graph neural network-based Trojan detection framework to protect the RISC-V SoC platform written in SystemVerilog from intruding malicious logic. The study is under-construction and planned to be validated on the Ariane RISC-V CPU with several peripheral IPs in the experimental section.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要