Unsupervised Domain Adaptation Using Adversarial Learning and Maximum Square Loss for Liver Tumors Detection in Multi-phase CT Images.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)(2022)

引用 3|浏览47
暂无评分
摘要
Automatic and efficient liver tumor detection in multi-phase CT images is essential in computer-aided diagnosis of liver tumors. Nowadays, deep learning has been widely used in medical applications. Normally, deep learning-based AI systems need a large quantity of training data, but in the medical field, acquiring sufficient training data with high-quality annotations is a significant challenge. To solve the lack of training data issue, domain adaptation-based methods have recently been developed as a technique to bridge the domain gap across datasets with different feature characteristics and data distributions. This paper presents a domain adaptation-based method for detecting liver tumors in multi-phase CT images. We adopt knowledge for model learning from PV phase images to ART and NC phase images. Clinical Relevance- To minimize the domain gap we employ an adversarial learning scheme with the maximum square loss for mid-level output feature maps using an anchorless detector. Experiments show that our proposed method performs much better for various CT-phase images than normal training.
更多
查看译文
关键词
Acclimatization,Humans,Liver Neoplasms,Radiopharmaceuticals,Tomography, X-Ray Computed
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要