HM-LDM: A Hybrid-Membership Latent Distance Model

Complex Networks and Their Applications XI(2023)

引用 2|浏览5
暂无评分
摘要
A central aim of modeling complex networks is to accurately embed networks in order to detect structures and predict link and node properties. The Latent Space Model (LSM) has become a prominent framework for embedding networks and includes the Latent Distance Model (LDM) and Eigenmodel (LEM) as the most widely used LSM specifications. For latent community detection, the embedding space in LDMs has been endowed with a clustering model whereas LEMs have been constrained to part-based non-negative matrix factorization (NMF) inspired representations promoting community discovery. We presently reconcile LSMs with latent community detection by constraining the LDM representation to the D-simplex forming the Hybrid-Membership Latent Distance Model (HM-LDM). We show that for sufficiently large simplex volumes this can be achieved without loss of expressive power whereas by extending the model to squared Euclidean distances, we recover the LEM formulation with constraints promoting part-based representations akin to NMF. Importantly, by systematically reducing the volume of the simplex, the model becomes unique and ultimately leads to hard assignments of nodes to simplex corners. We demonstrate experimentally how the proposed HM-LDM admits accurate node representations in regimes ensuring identifiability and valid community extraction. Importantly, HM-LDM naturally reconciles soft and hard community detection with network embeddings exploring a simple continuous optimization procedure on a volume constrained simplex that admits the systematic investigation of trade-offs between hard and mixed membership community detection.
更多
查看译文
关键词
Latent space modeling,Community detection,Non-negative matrix factorization,Graph representation learning.
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要