High-Performance Hardware Implementation of Lattice-Based Digital Signatures.

IACR Cryptology ePrint Archive(2022)

引用 0|浏览6
暂无评分
摘要
Many currently deployed public-key cryptosystems are based on the difficulty of the discrete logarithm and integer factorization problems. However, given an adequately sized quantum computer, these problems can be solved in polynomial time as a function of the key size. Due to the future threat of quantum computing to current cryptographic standards, alternative algorithms that remain secure under quantum computing are being evaluated for future use. As a part of this evaluation, high-performance implementations of these candidate algorithms must be investigated. This work presents a highperformance implementation of all operations of CRYSTALSDilithium and one operation of FALCON (signature verification) targeting FPGAs. In particular, we present a Dilithium design that achieves the best latency for an FPGA implementation to date and, to the best of our knowledge, the first FALCON hardware implementation to date. We compare our results with the hardware implementations of all viable NIST Round 3 postquantum digital signature candidates.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要