ConTIG: Continuous representation learning on temporal interaction graphs

NEURAL NETWORKS(2024)

引用 0|浏览32
暂无评分
摘要
Representation learning on temporal interaction graphs (TIG) aims to model complex networks with the dynamic evolution of interactions on a wide range of web and social graph applications. However, most existing works on TIG either (a) rely on discretely updated node embeddings merely when an interaction occurs that fail to capture the continuous evolution of embedding trajectories of nodes, or (b) overlook the rich temporal patterns hidden in the ever-changing graph data that presumably lead to sub -optimal models. In this paper, we propose a two-module framework named ConTIG, a novel representation learning method on TIG that captures the continuous dynamic evolution of node embedding trajectories. With two essential modules, our model exploits three-fold factors in dynamic networks including latest interaction, neighbor features, and inherent characteristics. In the first update module, we employ a continuous inference block to learn the nodes' state trajectories from time-adjacent interaction patterns using ordinary differential equations. In the second transform module, we introduce a self-attention mechanism to predict future node embeddings by aggregating historical temporal interaction information. Experiment results demonstrate the superiority of ConTIG on temporal link prediction, temporal node recommendation, and dynamic node classification tasks of four datasets compared with a range of state -of -the -art baselines, especially for long-interval interaction prediction.
更多
查看译文
关键词
Graph representation,Graph embedding,Temporal interaction graph,Mining and learning in graphs,Graph neural networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要