A non-exponential transmittance model for volumetric scene representations

ACM Transactions on Graphics(2021)

引用 26|浏览48
暂无评分
摘要
AbstractWe introduce a novel transmittance model to improve the volumetric representation of 3D scenes. The model can represent opaque surfaces in the volumetric light transport framework. Volumetric representations are useful for complex scenes, and become increasingly popular for level of detail and scene reconstruction. The traditional exponential transmittance model found in volumetric light transport cannot capture correlations in visibility across volume elements. When representing opaque surfaces as volumetric density, this leads to both bloating of silhouettes and light leaking artifacts. By introducing a parametric non-exponential transmittance model, we are able to approximate these correlation effects and significantly improve the accuracy of volumetric appearance representation of opaque scenes. Our parametric transmittance model can represent a continuum between the linear transmittance that opaque surfaces exhibit and the traditional exponential transmittance encountered in participating media and unstructured geometries. This covers a large part of the spectrum of geometric structures encountered in complex scenes. In order to handle the spatially varying transmittance correlation effects, we further extend the theory of non-exponential participating media to a heterogeneous transmittance model. Our model is compact in storage and computationally efficient both for evaluation and for reverse-mode gradient computation. Applying our model to optimization algorithms yields significant improvements in volumetric scene appearance quality. We further show improvements for relevant applications, such as scene appearance prefiltering, image-based scene reconstruction using differentiable rendering, neural representations, and compare it to a conventional exponential model.
更多
查看译文
关键词
level of detail, volume rendering, non-exponential media, transmittance, ray marching, differentiable rendering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要