On the Strategyproofness of the Geometric Median

arxiv(2023)

引用 3|浏览17
暂无评分
摘要
The geometric median of a tuple of vectors is the vector that minimizes the sum of Euclidean distances to the vectors of the tuple. Classically called the Fermat-Weber problem and applied to facility location, it has become a major component of the robust learning toolbox. It is typically used to aggregate the (processed) inputs of different data providers, whose motivations may diverge, especially in applications like content moderation. Interestingly, as a voting system, the geometric median has well-known desirable properties: it is a provably good average approximation, it is robust to a minority of malicious voters, and it satisfies the "one voter, one unit force" fairness principle. However, what was not known is the extent to which the geometric median is strategyproof. Namely, can a strategic voter significantly gain by misreporting their preferred vector? We prove in this paper that, perhaps surprisingly, the geometric median is not even $\alpha$-strategyproof, where $\alpha$ bounds what a voter can gain by deviating from truthfulness. But we also prove that, in the limit of a large number of voters with i.i.d. preferred vectors, the geometric median is asymptotically $\alpha$-strategyproof. We show how to compute this bound $\alpha$. We then generalize our results to voters who care more about some dimensions. Roughly, we show that, if some dimensions are more polarized and regarded as more important, then the geometric median becomes less strategyproof. Interestingly, we also show how the skewed geometric medians can improve strategyproofness. Nevertheless, if voters care differently about different dimensions, we prove that no skewed geometric median can achieve strategyproofness for all. Overall, our results constitute a coherent set of insights into the extent to which the geometric median is suitable to aggregate high-dimensional disagreements.
更多
查看译文
关键词
geometric median,strategyproofness
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要