Indoor Simulated Training Environment for Brain-Controlled Wheelchair Based on Steady-State Visual Evoked Potentials.

FRONTIERS IN NEUROROBOTICS(2020)

引用 13|浏览17
暂无评分
摘要
Brain-controlled wheelchair (BCW) has the potential to improve the quality of life for people with motor disabilities. A lot of training is necessary for users to learn and improve BCW control ability and the performances of BCW control are crucial for patients in daily use. In consideration of safety and efficiency, an indoor simulated training environment is built up in this paper to improve the performance of BCW control. The indoor simulated environment mainly realizes BCW implementation, simulated training scenario setup, path planning and recommendation, simulated operation, and scoring. And the BCW is based on steady-state visual evoked potentials (SSVEP) and the filter bank canonical correlation analysis (FBCCA) is used to analyze the electroencephalography (EEG). Five tasks include individual accuracy, simple linear path, obstacles avoidance, comprehensive steering scenarios, and evaluation task are designed, 10 healthy subjects were recruited and carried out the 7-days training experiment to assess the performance of the training environment. Scoring and command-consuming are conducted to evaluate the improvement before and after training. The results indicate that the average accuracy is 93.55% and improves from 91.05% in the first stage to 96.05% in the second stage (p = 0.001). Meanwhile, the average score increases from 79.88 in the first session to 96.66 in the last session and tend to be stable (p < 0.001). The average number of commands and collisions to complete the tasks decreases significantly with or without the approximate shortest path (p < 0.001). These results show that the performance of subjects in BCW control achieves improvement and verify the feasibility and effectiveness of the proposed simulated training environment.
更多
查看译文
关键词
simulated environment,brain-controlled wheelchair,indoor training,steady-state visual evoked potentials,path recommendation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要