Energy-Efficient High-Throughput Data Transfers via Dynamic CPU Frequency and Core Scaling.

arXiv: Distributed, Parallel, and Cluster Computing(2019)

引用 0|浏览2
暂无评分
摘要
The energy footprint of global data movement has surpassed 100 terawatt hours, costing more than 20 billion US dollars to the world economy. Depending on the number of switches, routers, and hubs between the source and destination nodes, the networking infrastructure consumes 10% - 75% of the total energy during active data transfers, and the rest is consumed by the end systems. Even though there has been extensive research on reducing the power consumption at the networking infrastructure, the work focusing on saving energy at the end systems has been limited to the tuning of a few application level parameters such as parallelism, pipelining, and concurrency. In this paper, we introduce three novel application-level parameter tuning algorithms which employ dynamic CPU frequency and core scaling, combining heuristics and runtime measurements to achieve energy efficient data transfers. Experimental results show that our proposed algorithms outperform the state-of-the-art solutions, achieving up to 48% reduced energy consumption and 80% higher throughput.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要