Achieving the KS threshold in the general stochastic block model with linearized acyclic belief propagation.

ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016)(2016)

引用 47|浏览24
暂无评分
摘要
The stochastic block model (SBM) has long been studied in machine learning and network science as a canonical model for clustering and community detection. In the recent years, new developments have demonstrated the presence of threshold phenomena for this model, which have set new challenges for algorithms. For the detection problem in symmetric SBMs, Decelle et al. conjectured that the so-called Kesten-Stigum (KS) threshold can be achieved efficiently. This was proved for two communities, but remained open for three and more communities. We prove this conjecture here, obtaining a general result that applies to arbitrary SBMs with linear size communities. The developed algorithm is a linearized acyclic belief propagation (ABP) algorithm, which mitigates the effects of cycles while provably achieving the KS threshold in O(n ln n) time. This extends prior methods by achieving universally the KS threshold while reducing or preserving the computational complexity. ABP is also connected to a power iteration method on a generalized nonbacktracking operator, formalizing the spectral-message passing interplay described in Krzakala et al., and extending results from Bordenave et al.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要