Online Learning for Wireless Distributed Computing.

arXiv: Learning(2016)

引用 23|浏览19
暂无评分
摘要
There has been a growing interest for Wireless Distributed Computing (WDC), which leverages collaborative computing over multiple wireless devices. WDC enables complex applications that a single device cannot support individually. However, the problem of assigning tasks over multiple devices becomes challenging in the dynamic environments encountered in real-world settings, considering that the resource availability and channel conditions change over time in unpredictable ways due to mobility and other factors. In this paper, we formulate a task assignment problem as an online learning problem using an adversarial multi-armed bandit framework. We propose MABSTA, a novel online learning algorithm that learns the performance of unknown devices and channel qualities continually through exploratory probing and makes task assignment decisions by exploiting the gained knowledge. For maximal adaptability, MABSTA is designed to make no stochastic assumption about the environment. We analyze it mathematically and provide a worst-case performance guarantee for any dynamic environment. We also compare it with the optimal offline policy as well as other baselines via emulations on trace-data obtained from a wireless IoT testbed, and show that it offers competitive and robust performance in all cases. To the best of our knowledge, MABSTA is the first online algorithm in this domain of task assignment problems and provides provable performance guarantee.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要