Input space adaptive embedded software synthesis

VLSI Design(2002)

引用 8|浏览14
暂无评分
摘要
This paper presents a novel technique, called input space adaptive software synthesis, for the energy and performance optimization of embedded software. The proposed technique is based on the fact that the computational complexities of programs or sub-programs are often highly dependent on the values assumed by input and intermediate program variables during execution. This observation is exploited in the proposed software synthesis technique by augmenting the program with optimized versions of one or more sub-programs that are specialized to, and executed under, specific input sub-spaces. We propose a methodology for input space adaptive software synthesis which consists of the following steps: control and value profiling of the input program, application of compiler transformations as a preprocessing step, identification of sub-programs and corresponding input sub-spaces that hold the highest potential for optimization, and transformation of the sub-programs to realize performance and energy savings. We have evaluated input space adaptive software synthesis by compiling the resulting optimized programs to two commercial embedded processors (Fujitsu SPARCliteTM and Intel StrongARMTM). Our experiments indicate that our techniques can reduce energy consumption of the whole program by up to 7.8× (an average of 3.1× for SPARClite and 2.6× for StrongARM) while simultaneously improving performance by up to 8.5× (an average of 3.1× for SPARClite and 2.7× for StrongARM), leading to an improvement in the energy-delay product by up to 66.7× (an average of 8.2× for SPARClite and 6.3× for StrongARM), at the cost of minimal code size overheads (an average of 5.9%)
更多
查看译文
关键词
energy optimization,portable low-power electronic systems,control profiling,input space adaptive,intermediate program variable,corresponding input sub-spaces,value profiling,compiler transformations,low-power electronics,fujitsu sparclite,input program,embedded processors,intel strongarm,optimized sub-program versions,computational complexity,program optimization,software synthesis,performance optimization,energy consumption,proposed software synthesis technique,embedded software,optimising compilers,embedded systems,input space adaptive software,input space adaptive software synthesis,software engineering,computational complexities,subroutines,specific input sub-spaces,optimized program,software performance,optimization,application software,data preprocessing,low power electronics,adaptive control,embedded processor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要