Scale-up of manufacturing of printed enzyme electrodes for enzymatic power source applications

Journal of Applied Electrochemistry(2014)

引用 5|浏览15
暂无评分
摘要
Production of printable enzymatic power sources was scaled up from laboratory to roll-to-roll (R2R) pilot production. The anode and cathode enzymes were glucose oxidase (GOx) and laccase, respectively. The best laboratory-scale cells had a maximum power and energy density of 1.4 ± 0.1 µW cm −2 and 5.5 ± 0.2 µWh cm −2 , respectively. These values are 5 and 28 times higher compared to our previously published values. The R2R-produced cells had a maximum power and energy density of 0.40 ± 0.03 µW cm −2 and 0.6 ± 0.1 µWh cm −2 , respectively. This is 11 % of the best laboratory manufactured cells. It is suspected that the decrease in electrochemical performance originates from the lower mediator amount and higher drying temperature than that of the laboratory produced cells. However, the trials conducted in this work showed that printed enzymatic active layers can be fabricated and dried with a rotary screen-printing machine in R2R process. Hence, fully printed GOx//laccase power sources could be produced from R2R on a large scale for printed electronics applications.
更多
查看译文
关键词
Paper-based biofuel cell, Enzymatic power source, Printing, Mass production, Biopower source
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要