Synthesis Algorithm for Application-Specific Homogeneous Processor Networks

IEEE Transactions on Very Large Scale Integration (VLSI) Systems(2009)

引用 10|浏览1
暂无评分
摘要
The application specific multiprocessor system-on-a-chip is a promising design alternative because of its high degree of flexibility, short development time, and potentially high performance attributed to application specific optimizations. However, designing an optimal application specific multiprocessor system is still challenging because there are a number of important metrics, such as throughput, latency, and resource usage, which need to be explored and optimized. This paper addresses the problem of synthesizing an application-specific multiprocessor system for stream-oriented embedded applications to minimize system latency under the throughput constraint. We employ a novel framework for this problem, similar to that of technology mapping in the logic synthesis domain, and develop a set of efficient algorithms, including labeling and clustering for efficient generation of the multiprocessor architecture with application specific optimized latency. Specifically, the result of our algorithm is latency optimal for directed acyclic task graphs. Application of our approach to the Motion JPEG example on Xilinx's Virtex II Pro platform FPGA shows interesting design tradeoffs.
更多
查看译文
关键词
algorithm theory,computer architecture,embedded systems,microprocessor chips,multiprocessing systems,system-on-chip,application-specific homogeneous processor networks,clustering,multiprocessor architecture,optimized latency,stream-oriented embedded applications,synthesis algorithm,system-on-a- chip,Clustering,design space,labeling,multiprocessor,task-level pipeline
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要